Production Issues for Fluid Fertilizer Plants

Fluid Fertilizer Marketing and Technology Workshop December 9, 2009

By: David Plank

PRESENTATION FORMAT

SAFETY – COMPLIANCE GREEN OPPORTUNITIES BLENDING & HANDLING

Question & Answer Session

Our Most Important Priority

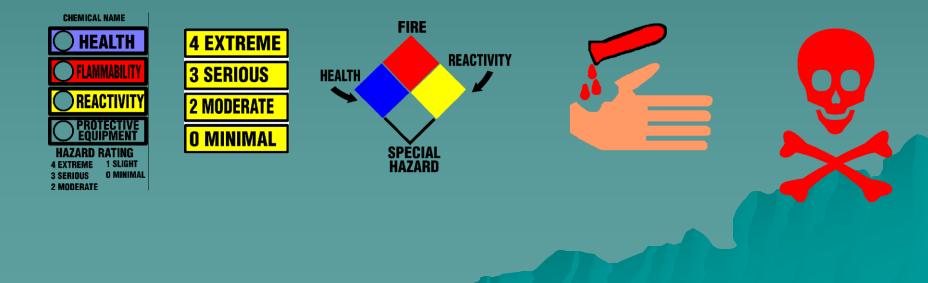
- Every Employee Goes Home Safe
 - Training Documented
 - PPE when you can't eliminate hazards
 - Regular Tailgate & Huddles Meetings
 - Policies, Procedures, Work Directions
 - Develop Culture of Safety in
 - Environmental Safety
 - Facility / Equipment Safety

Special Situations - Respirators – Confined Space Entry – Forklifts/Loaders/Shuttle Trucks - Elevated Work / Maintenance ♦ Harnesses ♦ Safety Cages ♦ Rest Platforms ◆Ladders & Manlifts

Ingenuity Deserves Recognition

SAFETY with CHEMICALS

MSDS PPE (Spill, Blending, Handling) SPILLS


- Reporting Requirements
- Emergency Response Plan
- Training
- Spill Response Kits
- Emergency Response Companies
- Customer Liabilities & Need to Know

LABELING

Label All Containers Properly Avoid trade symbols: KOH, MOP, APP Use Placards, NFPA, and Caution Labels & Symbols

SECURITY

Site & Transportation Security
 Homeland Security Compliance
 Hazmat Railcar Training
 Security Fencing
 Restricted Entry

Green Opportunities

Promote Fluid Fertilizer's Green Benefits Precision Application Spoon Feeding Slow Release Liquids Multi-Task Applications (Weed & Feed) Promote Green Activities (Save Energy, Save Water, Reduce Contamination, Recycle)

BLENDING LIQUID FERTILIZERS

Solubilities
Order of Addition
Stability

Solubility of Different Potash Materials at different Temperatures

12/9/09

Temperature	Potassium Nitrate	Potassium Chloride	Potassium Sulfate	Monopotassium Phosphate		Dipotassium Phosphate	
(F)	K2O	K2O	K2O	K2O	P2O5	K2O	P2O5
32	5.4	13.8	3.7	4.3	6.4	30.8	23.3
35	5.8	14.0					
40	6.6	14.3		4.7	7.0		
45	7.4	14.7					
50	8.1	14.9	4.6	5.2	7.7	32.3	24.1
55	9.0	15.2					
60	9.9	15.6	5.6	5.9	8.6	32.6	24.5
65	10.8	15.9					
70	11.7	16.1		6.4	9.6	33.3	25.1
75	12.7	16.4		6.9	10.2	33.9	25.6
80	13.4	16.7		7.0	10.5	34.2	25.8
85	14.5	17.0	6.1	7.4	11.0	34.7	26.1

Potassium Nitrate (Hot Water Requirement)

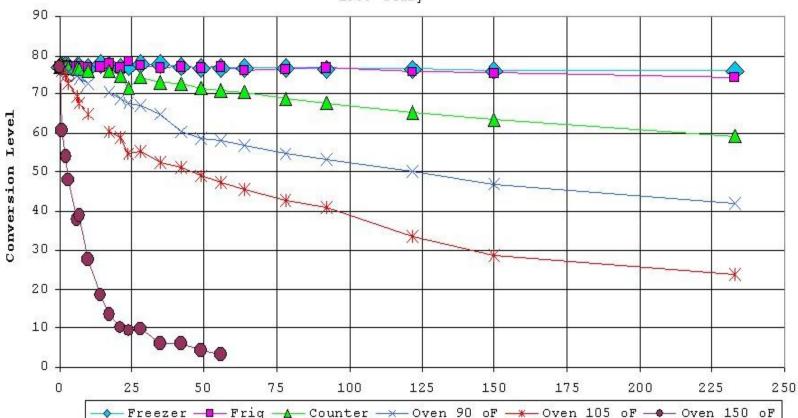
◆ Hot Water 2 – 2.5 : 1 Total Water: 3:1 Example: 5:0:10 – PN, AN-21, Water Pot. Nitrate 441 Lb/Ton Hot Water 882 Lb/Ton Cold Water 487 Lb/Ton Amm Nit - 21% 190 Lb/Ton

Solubility Calculation Example

Raw Material	<u>Solubility</u>	<u>Target</u>	<u>% Sol</u>	<u>Lb/Ton</u>	<u>N - Units</u>
Pot. Nitrate (13.5-0-45)	12.7	12	94%	444	3.00
UAN - 32%	32	0.36	1%	23	0.36
Calcium Nitrate 9-0-0-11	11	0.5	5%	364	1.64
Water				1169	
	Total Mix		100%	2000	5.00

Solubility of micronutrients in Ammonium Poly Phosphate Solutions

	% by weight of element (Zn, Cu, Fe, Mn, B, Mo)			
Material Added	in 11-37-0	in 10-34-0	in 8-24-0	
Zinc Oxide	3.0	2.25	0.05	
Zinc Sulfate	2.0	1.30	0.05	
Zinc Carbonate	3.0	2.25	0.05	
Cupric Oxide	0.7	0.53	0.03	
Copper Sulfate	1.5	0.14	0.13	
Ferric Sulfate	1.0	0.80	0.08	
Manganous Oxide	0.2	0.15	0.02	
Sodium Molybdate	0.5	0.38	0.50	
Borax (Na2B4O7*10H20)	0.9	0.90	0.90	


If more than one micronutrient is used in a liquid mixture, the micronutrients can

react with each other over time creating crystals or insoluble precipitant.

Ammonium Polyphosphate Stability vs. Temperature

Impact of Temperature on Conversion Level of 11-37-0

1999 Study

Order of Addition

Suspend Solids While Mixing Chelating / Complexing ♦ pH ♦ Temperature Reaction / Compatibilities Foaming / Air Entrapment Many exceptions to Rules of Addition

Order of Addition

- Water (Hot / Cold)
- Chelating /Complexing Agent
- pH adjustment (initial)
- Micronutrients for Chelating/Complexing
- Potash
- Additional Micronutrients
- Phosphates
- Nitrogen
- Calcium Nitrate / Chloride
- ATS / Pot Carbonate / SRN's

Final pH Adjustment

Pump Seals

Packing Seals Mechanical Seals - Silbide on Silbide - Product Cooled – Water Cooled – Internal Discharge – Water Cooled – External Discharge $(\sim 75 \text{ gal} / \text{minute})$

THANKS...

FOR YOUR ATTENTION & YOUR TIME!

QUESTIONS ?